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NUMERICAL ANALYSIS OF FLOW THROUGH OSCILLATING CASCADE SECTIONS

Dennis L. Huff
National Acronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

A compressible, Euler or full Navier-Stokes, finitc
difference code has been developed for modeling
inviscid and viscous flow through oscillating cascades.
The code uscs a deforming grid technique to capturce
the motion of the airfoils and can modcl oscillating
cascades with both zero and non-zero inter-blade
phase angles. Two-dimensional, unsteady character-
istic boundary conditions are applicd at the inlet for
viscous solutions and to both the inlct and exit for
inviscid solutions to minimize reflections from these
regions.

Results are presented for two cascade geometries
for comparisons with expcrimental data and a flat
plate cascade for comparisons with small-
perturbation theory. Overall, there is good agree-
ment for the two non-zero inter-blade phasc angle
cases presented and poor agreement for the zero
inter-blade phasc angle cases. Studics on reflecting
versus non-reflecting inlet and exit boundary condi-
tions show that the treatment of the boundary can
have a significant effect on the first harmonic,
unsteady pressure distributions for the cases with
zero inter-blade phase angles. Using first or second-
order temporal accuracy in the numerical algorithm
did not make a significant difference in the unsteady
pressure distributions for the present solutions.

Nomenclature
C sonic velocity
Cp pressure cocfficicnt,
p-p,
v
c blade chord length
€ total energy of the

fluid per unit volume
g/c gap-to-chord ratio
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The design of turbomachinery blades requircs the
prevention of flutter for all operating conditions.
However, flow ficld predictions used for acroclastic
analysis are not well developed for all flow regimes.
Many methods used for flutter analysis depend on the
successful predictions of blade loading and blade
motion. Ideally, this is an intcractive process where a
structural analysis determines the blade motion from
the blade loading and the loading is determine by the
flow analysis from the blade motion. Unfortunatcly,
the flow analysis tcchnology lags the structural analy-
sis technology in that accurate predictions of the flow
field for transonic flow through oscillating cascades
are not readily available. Many of the existing flow
analysis methods are numerical and require large

amounts of computer time. However, advances in
computer technology have given the acrodynamicist
hope for numerical methods being used as a tool in
the design process.

In theory, the solution of the Navier-Stokes
cquations should model all flow phenomena asso-
ciated with transonic flow through oscillating cas-
cades. Since exact solutions are not available,
computational techniques arc used and introduce
approximations to the solutions. These approxima-
tions commonly usc eddy viscosity methods for turbu-
Ience modeling, numerical dissipation terms for
stability and coarse grids for practical computing.
Further complications arise when unsteady flow exists
and proper treatment of the boundary conditions arc
esscntial. The message here is that numerical solu-
tions of the more complex flow equations, like the
Navier-Stokes equations, do not automatically give
accurate results. Much research is needed in this
arca to develop proper modeling of the physical flow
ficld.

The present research focuses on numerical
solutions of the Euler and Navier-Stokes cquations to
model two-dimcensional flow through oscillating cas-
cades. The model prescribes harmonic pitching
motions for the blade sections for both zero and
non-zero inter-blade phase angles. The deforming
grid technique introduced in reference 1 is utilized
for convenicnt specification of the periodic boundary
conditions. Several sample predictions are compared
to expcrimental data. Also, an investigation of
reflecting versus non-reflecting boundary conditions
is presented to determine their effect on the unsteady
blade loading.

Governing Equati
A major portion of the present code is based on
the unsteady, viscous solver developed by Sankar and
Tang (ref. 2) for flow past isolated airfoils. This code

solves the two-dimensional, unsteady, Reynolds-
averaged, compressible Navier-Stokes equations on a
body-fitted moving coordinate system in strong
conscrvation form using an ADI procedure. These
cquations can be writien as:

G.+F,+C =R+ 5 (1)
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where

Gg=J '{p.pu.pu.e} (”)

and pis the fluid density; u and v are the Cartcsian
components of the fluid velocity; ¢ is the total energy
per unit volume. The body-fitted (5. 1. T) coordinate
system is related to the Cartesian coordinatcs using
the following transformation:

E=8(x.y.b)
n=n(x.y.t) (3)
T=1

The Jacobian of the transformation is given by:

1
J= E,‘", - nxgy = \"/ ;\“ji Q)
Ngda ek

and the metrics of the transformation arc given by:

E,=JYq
g, =-Jx,

N, = -Jyy
n,=Jx, (%)

Standard central differences were used Lo compute
X¢. Yo Xq. ¥y Which were then used to caleulate the
meltrics.

The £ and & terms in equation (1) are the inviscid
terms in the £ and rydirections, respectively. The
viscous terms, & and 3, are treated cxplicitly and can
be omitted to give solutions for the Euler cquations.
The Beam-Warming, block ADI algorithm is used to
solve the governing equations. Artificial dissipation is
added to help the stability. The solution is sccond-
order accurate in space and first or sccond-order
accurate in time. The Baldwin-Lomax, two-layer
algebraic model (ref. 3) is used to cvaluate the eddy
viscosity. The Johnson-King (ref. 4) and Gorski (rcf.
5) k - € turbulence models have been coded by Wu
(ref. 6), but no comparisons are includcd in this
study. Further information about the algorithm for
isolated airfoils can be found in refercnce 2.

Grid

An unique feature of the present code is the
treatment of the grid for oscillating cascades. A
method for deforming the grid was developed in ref-
crence 1 for zero inter-blade phase angles. The
present study is an extension of this method to model
non-zcro inter-blade phase angles.

The code uses a C-grid generated from Sorenson’s
(ref. 7) GRAPE code, which was modificd by Chima
(ref. 8) for improved modcling in turbomachincry
problems. One C-grid is gencrated for cach blade in
the cascade. The outer boundary of the C-grid is
defined by the user in the GRAPE code. A deform-
ing grid technique (ref. 1) is used to locate the posi-
tion of the grid as a function of time. The inncr
boundary moves with the prescribed blade motion,
while the outer boundary remains fixed in space. The
grid lines connecting the inner and outer boundarics
arc allowed to deform. The amount of deformation
is a function of the distance away from the surface of
the airfoil. A weighting function, w, is defined as:

w, =w(t.n)= (6)

s(e.m ‘
S(E'nmax)

where s = the arclength of a grid line from the airfoil
surface (n=1) to some grid point along £ = constant,
and ..« = the outer boundary grid line. The grid
deformation is defined as:

Ax, = wll(Ax;l)
Ay”"wI/(Ay;;) (7)

where A x;and Ay ., arc the spatial diffcrences
between successive time steps if the entire grid was
moved as a rigid body. From equations (6) and (7),
we sce that nodes at the inner boundary (s=0) gives
w,, = 1, which mcans the airfoil surface follows the
rigid body motion of the blade. Conversely, the outer
boundary nodes give w,, = 0 and the node positions
remain fixed at the initial specified locations. The
intcrior nodes shear in space relative to the initial
grid as w, varies between 0 and 1. The node veloci-
tics can be easily found by dividing the grid deforma-
tion by the time step value.

Multiple blade computations arc madc possible by
stacking the C-grids for each blade and passing infor-
mation between the upper and lower boundarics.



Each C-grid is expanded by onc grid linc in the
rrdirection at the outer boundary o provide ghost
points for the interior grid of the adjacent blades.
This allows the periodic boundary condition to be
treated implicitly. The case for zcro inter-blade
phasc angle is the simplest for grid generation. Peri-
odic boundary conditions are applied across the
upper and lower boundaries thereby requiring a grid
for only one blade. However, non-zero inter-blade
phase angles require multiple blade computations for
cxact treatment of the periodic boundary conditions.
For example; an inter-blade phase angle (o) of 180
degrees requires two blades, o = 90 degrees
requires four blades, cte. This significantly increasces
the computational time for non-zcro inter-blade
phase angles, but provides an exact boundary condi-
tion. This method may be useful as a tool for evalu-
ating simplified periodic boundary conditions that do
not use as many bladces for non-zero inter-blade
phasc angles.

The deforming grid technique is demonstrated in
Figure 1 for a multiple blade computation. The
figure shows two extremely simplificd grids supcrim-
poscd at two different times. Multiple grids arc
generated for a NACA 16-004 cascade with twenty
degrees of stagger. This gcometry is representative
of a geometry that might be used in the advanced
turboprop. The inter-blade phasc angle is 90 degrees
and requires four blades to specify the periodic
boundary conditivns. (Only three blades are shown
in this figure for clarity.) The amount of oscillation is
exaggerated to illustrate the deforming grid tech-
nique. Notice how the outer boundary of the grid
around one blade remains fixed in space, whilc the
inner boundary follows the motion of the airfoil. An
actual calculation for an oscillating cascade typically
has a pitching amplitude of only a few degrees and
docs not distort the grid as much as shown in Figurc
1. Larger pitching amplitudes are possible, however,
by regriding at different time periods and using the
deforming grid technique for various time intervals of
the pitching motion.

Boundary Conditi

The proper treatment of boundary conditions is
important for any numerical computation and cspe-
cially for unsteady flows. The present solution solves
for the flow around each blade independently and
uses periodic boundary conditions along the upper

and lower boundarics to model the cascade effects.
Ghost points arc assigned at the first interior grid linc
(M= Nmax = 1) and arc used implicitly by the adjacent
grid from the next blade. Although it is tempting to
usc the most current flow information as it becomes
available from the integration scheme, it is important
to only usc flow information from the same time
period across the periodic boundarics. This elimi-
nates time inaccuracy due to the direction of time
marching from blade to blade. The metric data is
also forced to be continuous along the periodic
boundaries. This procedure essentially makes the
periodic boundaries invisible to the flow solution and
mcans the only specification of boundary conditions
are at the inlet and exit planes, blade surfaces and the
slits aft of the airfoils.

The inlet conditions are assumed to be uniform
with a reference density, velocity and inlet flow angle.
In previous solutions (ref. 1), the static pressure was
also specificd from the steady-state solution of a sta-
tionary cascade. This provided cnough information
Lo determine the unsteady solution for an oscillating
cascade, but also introduces a reflective boundary
condition. This problem has been addressed by
transforming the fluid equations into characteristic
form at the inlct boundary and prescribing the flow
information as incoming or outgoing waves. This
approach was formulated by Hedstrom (ref. 9) for
onc-dimensional gas dynamic equations, and
extended to two-dimensional problems by Thompson
(ref. 10). Whilc the two-dimensional method does
not give a perfectly transmitting boundary condition,
it does offer a method for minimizing reflections by
considering waves oblique to the grid boundary. A
bricf explanation of this method is given below,

The two-dimensional fluid equations from equa-
tion (1) can be generalized in the following form if we
ncglect viscous terms:

aU+§[«‘ o6

ot T3 T an TGt Cas0 (8)

Define the following relations:
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C,=P'C.C,=P 'C, (9)

Substituting into equation (8) and multipying by P~
gives:

W, 42U, g% cvc,=0 10

! at oan ¢+ " (10)

The Aand B matrices can be defined as:
A=S'AS,B=T 'HT (1)

where A and H are diagonal matriccs which define
the characteristic velocities. Hence, the characteristic
form of equation (8) can be writtcn as:

oU - ol -1 Y
—+S'AS—+T HT' =
ot 2% an

+C,+C,=0 (12)

A portion of the Nmax grid linc is defined to be the
inlet to the cascade. This requires equation (8) to be
written in characteristic form only in the rydirection:

(13)

Consider the terms in the parentheses containing the
information in the 1rdirection. Define:

Lyl )__au
(T HT S+ Co | =5 (14)
Multiply equation (14) by 7:
2% ur¥ire,-o 15
at, M " (1)

The boundary conditions at the inlet boundary can be
written in a form similar to equation (15):

1

mkm+ n,+m,C =0,

(16)

where

U

”*"“Sﬁ for outgoing waves

I

0 for incoming waves

Here, m, are the left eigenvectors of B, L, arc the

cigenvalues of 8, and % is evaluated using onc-sided
diffcrencing. The problem now becomes solving for

E1Y . .0
T from equation (16) and computing 7 from equa-
tion (13):

30 oF . AU

—r—+C

ot dF Y oty a7
The boundary conditions applied at the inlet for sub-
sonic inflow specify density, velocity and flow angle
and solve equation (17) to determinc the energy.

For viscous flows, the exit boundary conditions
extrapolate density and velocity from the interior and
specify static pressure to calculate energy. The char-
acteristic equations are not valid across the viscous
wake duc to the non-isentropic flow at the exit
boundary. This introduces reflective boundary condi-
tions at the exit. It is not clear how to apply a
non-reflective boundary condition in this region. For
inviscid flows, the characteristic equations are used by
specifying static pressure at the exit and solving an
equation similar to equation (17) for density and the
two components of velocity.

Solid wall boundary conditions are applied along
the airfoil surface and the flow variables are averaged
across the slit aft of the airfoil.

Resul 1 Di .
NACA 65-Series Cascade

Sample predictions were presented in reference 1
to validate the use of a deforming grid for an isolated
airfoil. The present study investigates a NACA 65-se-
rics cascade with subsonic inflow to help validate the
solver for both zero and non-zero inter-blade phasc
angles. The predictions presented for this cascade
arc obtained from the solution of the full Navier-
Stokes equations and therefore include viscous losses.
The experimental data was obtained by Carta (ref.
11) and has been uscd by other researchers for code



validation. This cascade has been called "The First
Standard Configuration” by the Second International
Symposium on Aeroelasticity in Turbomachines (ref.
12). Figure 2 shows the cascade gcometry nomencla-
turc uscd in the present investigation.

The cascade geometry consists of NACA 65-series
thickness distributions on a 10 degrec circular-arc
camber line, 55 degree stagger angle (), a gap-to-
chord ratio (g/c) of 0.75 and a thickness-to-chord
ratio (t7) of 0.06. An arbitrary test casc from the
First Standard Configuration has been chosen for
comparison with the present solver. The inlet Mach
number (M) is 0.17 and the airfoils arc pitching
about the midchord with an amplitude (a) of 2.0
degrees and a reduced frequency (k) of 0.123 based
on scmi-chord. Two inter-blade phasc angles (0) of 0
and 90 degrees are investigated in this study for com-
parisons with experimental data.

The grid used in the solution for this cascade is
shown in Figure 3. The GRAPE code is used to
gencrate a grid about the mean pitching angle. The
solver is used to determine the mean flow solution.
An iterative process is necessary by the user to verify
that the specified exit pressure gives the desired
velocity specified at the inlet. (Losses through the
cascade prevent an exact analytical specification of
thesc properties.) Four blades arc rcquired for =90
degrees, although only two arc shown in Figure 3a.
Multi-blade solutions for oscillating cascades are
done by generating grids for each blade and using the
mean flow solution as an initial condition to the
unstcady solutions. Thc solver automatically gencr-
ates thesce grids before the unsteady solution begins
by deforming the mean flow grid for onc blade
through one cycle of oscillation and saving the grids
that occur at multiples of the desired inter-blade
phase angle. For example, when o=90 degrees, four
grids need to be assembled with a blade-to-blade
phase angle of 90 degrees. The grid from the mean
flow solution is used for the first blade (t=0). The
grids for the remaining three blades arc found by
deforming the mean flow grid through one cycle of
oscillation and storing the grid coordinates when
wt=9%), 180, and 270 degrees. The solver numbers
the bladcs and essentially stacks the grids to give one
global grid containing four blades. The global grid is
then used as the initial grid for the unstecady solution,
where it is deformed for the oscillating cascade using
the method described in the "Grid" section. Since the
dynamic memory is usually limiting for multi-clement

grids, the solid-state storage device on the CRAY-
XMP at NASA Lewis Research Center is used to
storc all grids and flow information. The C-grid and
flow variables for one blade are transferred into
dynamic memory on the CRAY as nceded by the
solver.

Figure 3b shows more detail of the grid near the
airfoil surface. The distance of the first grid line off
the airfoil surface is 0.00005 chord lengths, which is
appropriatc for modcling the boundary layer. The
grid around one airfoil is 157 x 40 in the & and
+directions, respectively. The grid is clustered about
the leading cdge and the boundary layer region.
Also, the grid near the inlet is clustercd in the 11-di-
rection to resolve waves ncar the inlet.

A steady-state solution was done first for the
NACA 65-series cascade for the mean flow condi-
tions. This required adjusting the exit pressure until
the inlet Mach number was near 0.17. As mentioned
by Verdon (rcf. 13), there is some ambiguity concern-
ing the inlet flow angle. The experimental flow angle
was 3,=66.0 degrees. Verdon found that B,=62.2
degrees gave better agreement with the experimental
mcan flow pressure distributions. A study of mean
flow pressure distributions for various inlet flow
angles is presented in Figure 4 using the present
solvcr. An inflow angle of 64 degrees was found to
give the best comparison with the experimental data.
Each solution required 2000 time steps to reach a
steady-state and used about 400 seconds of CRAY-
XMP CPU (ime.

Two unstcady solutions for inter-blade phasc
angles of 0 and 90 degrees were donc using the mean
(low solution as an initial condition. Both solutions
were run with first-order temporal accuracy. The
surface pressure time histories were recorded and
found to reach a reasonably periodic solution after
two cycles of cascade oscillation. A Fourier trans-
form was done on the second cycle to determine the
first harmonic magnitude and phase of the pressure
distribution relative to the airfoil motion. Higher
harmonics of the surface pressure distributions were
found to be small compared to the fundamental fre-
qucncy. The pressures are normalized by the airfoil
pitching amplitude and the phase is referenced to the
airfoil pitching angle starting at the maximum (nose
up) blade angle. The predictions for =90 and 0
degrces are shown in Figure 5 along with the exper-
imental data. Both the magnitude and phase are well
predicted for both the upper and lower surfaces.



The phase angles for o=0 degrees differ quantita-
tively on the upper surface toward the trailing edge,
although the overall trend is predicted. The reason
for this is probably due to the pressure magnitudes in
this region being close to zero. The unsteady calcula-
tions of phase are more sensitive when the output of
the real and imagjnary parts of pressure from the
Fourier transform go towards zero. The unsteady
solutions use 3.26 x 10~%seconds of CPU per time
step per grid point per blade and required 16053 time
steps to complete 2.25 cycles of oscillation.

Flat Plate Cascade

A cascade of flat plates was used in the present
analysis for comparisons with the unsteady, small-
perturbation, subsonic analysis in reference 16. The
cascade was arranged with y=>53 degrees and
g/c=0.767, which corresponds to the conditions used
in the biconvex airfoil cascade to be presented in the
next section. All runs for the remaining solutions are
inviscid so that the non-reflecting boundary condi-
tions are valid at both the inlet and exit planes to the
cascade. This also allows comparisons between runs
using reflecting and non-reflecting boundary condi-
tions.

The first set of flow conditions consider M =0.65,
B,=53.0, k=0.221, and a=0.10 degrees. This gives a
zero mean incidence angle on the flat plates and a
small amplitude of oscillation to allow for compari-
sons with the small-perturbation, subsonic flat plate
analysis of Smith (ref. 16). A 199 x 33 grid was used
around a flat plate with T =0.005. The leading and
trailing edges were rounded to aid the C-grid genera-
tion, and therefore this is only an approximate repre-
sentation of a flat plate. Figure 6 shows the
comparisons for o=-90, 90, and 0 with the
small-perturbation theory. (Notice that the pressure

coefficient is now normalized by p , V' finstead of
%p ,V 2 to be consistent with the normalization used

by Smith in reference 16). Also shown in Figure 6
are comparisons from the present analysis for reflec-
tive versus non-reflective boundary conditions. The
"reflective boundary conditions" means the inlet and
exit planes specify the information from the mean
flow solution. The "non-reflective boundary condi-
tions” use the characteristic method described earlier
to help minimize reflections from the inlet and exit.
For o=-90 and o=90, the agreement is very good

for all cases and the type of boundary conditions had
little effect on the results. When o=0, the agreement
with small-perturbation theory became worse and the
type of boundary conditions used at the inlet and exit
gave different the results within the code. In particu-
lar, the magnitude distribution dropped to values
closer to the theory when using the non-reflective
boundary conditions, but the phase values became
worse. The reason for this is unknawn, although this
condition is very close to resonance, as calculated by
Verdon (ref. 13). Acoustic resonance occurs in cas-
cades when a wave propagates from an airfoil in the
direction of the stagger line and intersects an
adjacent blade in the same amount of time associated
with the inter-blade phase angle. Numerical solu-
tions are expected to be difficult when operating near
an acoustic resonance condition.

Solutions were also done for oscillating flat plates
with M ,=0.80 and k=0.185 and are compared to the
small-perturbation theory. The results are presented
in Figure 7 and show the same trends reported for
Figure 6. The non-zero inter-blade phase angle solu-
tions are in good agreement with the small-
perturbation theory. The near-resonant condition ,
o=0, shows poorer agreement with the theory. In
general, the non-reflecting boundary conditions show
good agreement in the magnitudes of the unsteady
pressures when compared to the theory, but differ in
the phase distributions. On the other hand, the cases
using reflective boundary conditions show worse
agreement in magnitude predictions and better
agreement in phase distributions.

NASA Lewis Cascade

Another cascade geometry for which experimental
data (including unsteady surface pressure distrib-
utions) exists is the NASA Lewis Transonic Oscillat-
ing Cascade (ref.14 and ref. 15). This cascade
consists of symmetric biconvex airfoils (t"=0.076)
arranged with y=53 degrees and g/c=0.767. Both
subsonic and transonic test cases have been chosen
from the experimental data for comparisons with pre-
dictions from the present solver. Again, all runs for
the remaining solutions are inviscid so that a
boundary condition study can be performed.

The subsonic test cases consider M =0.65 and the
mean B,=60.0 degrees (i=7 degrees). The grid gen-
eration is similar to the technique described for the
NACA 65-series cascade. The distance of the first



grid linc off the airfoil surface is 0.01 chord lengths,
The grid around one airfoil is 199 x 22 in the § and
rrdirections, respectively. Unsteady solutions were
done for an oscillating cascade with the biconvex
airfoils, a=1.2 degrees, k=0.221, and 0=-90,90 and ()
and are shown in Figures 89,and 10, respectively. A
Fourier transform was done on the third cycle to
determine the first harmonic unsteady pressure dis-
tributions. For completeness, both the CP and AC P
predictions are presented for real and imaginary
parts, and magnitude and phase components. The
cases for o=-90 (Figure 8) and o=% (Figurc 9) arc in
good overall agrecment with the experimental data of
reference 15. When o=0 (Figure 10), therce is a shift
in the real part (in-phasc part) of the unsteady pres-
surc on both the upper and lower surfaces relative to
the experimental data. Again, operating ncar an
acoustic resonant condition may contributc to these
discrepencies. It is interesting to note that while the
upper and lower unsteady surface pressures arc in
poor agreement with the data, the AC P representa-
tion of the same predictions look better. This illus-
trates the importance of presenting separate pressure
distributions for the upper and lower surfaces when
pussible.

An investigation of the numcrical time accuracy is
donc for the samc test cases presented above. The
code can be run with either first-order or second-
order accuracy in time. Figurc 11 comparcs the rcal
and imaginary parts of pressure for o=-90, 90, and 0,
and shows that there are only minor differences
between the predictions for first and second-order
temporal accuracy.

The transonic test cascs are identical to the
subsonic test cases, except M ,=0.80. The increase in
the inlet velocity causes a shock to form on the upper
surface near the leading edge. Figure 12 shows the
mean flow pressure distributions for two conditions:
1.) matching the experimental inlet Mach number
(0.80) and 2.) matching the experimental ratio of the
exit static pressure to the inlet total pressure (0.7248).
The desired flow conditions probably lic somewhere
between these predictions, as shown by the compari-
son with experimental data. In both cases, the
pressure distributions are in good agrecment with
each other and the experimental data and therefore
either condition could be used for the mean flow in
the unsteady analysis. The unsteady solutions (that
follow) match the inlet flow velocity from the exper-
imental data.

The unsteady pressure distributions for k=0.185,
0=-90,90, and 0 degrees arc shown in Figures 13, 14,
and 15, respectively. The change in the reduced
frequency maintains the same oscillation frequency
uscd in the subsonic cascs (=200 Hz). The agree-
ment with cxperimental data are very good for the
0=-90 degrees case (Figure 13). The shock on the
upper surface is modcled by the analysis, as evident
by the pressure peaks near the lcading edge. Notc
that the experiment did not have pressure transducers
ncar this region and is not expected Lo capture this
bchavior. The agreement with the data becomes
progressively worse for 0=90 (Figure 14) and o=0
(Figurc 15). The real-part of pressure on the forward
portion of the upper surface differs from the data for
o=90. This was also observed by Verdon (ref. 13)
using a lincarized potential code. Both the real and
imaginary parts of pressure differ from experiment
for 0=0. Again, this case is near an acoustic reso-
nance condition. Also, the real and imaginary parts
of pressurc arc significantly smaller than other cases,
which makes the calculations for phase sensitive to
their values.

A study was donc to determine the effect of
boundary conditions on the first harmonic pressure
distributions. Each of the three cases reported above
were run with four combinations of inlet and exit
boundary condition types: 1.) reflecting inlet and exit,
2.) "non-reflecting” inlet and exit, 3.) reflecting inlet,
"non-reflecting” exit, and 4.) "non-reflecting” inlet,
reflecting exit. The results are presented in Figure 16
and show that the type of boundary conditions can
make a significant difference on the first harmonic
unsteady pressure distributions. For clarity, the indi-
vidual cases are labeled only when there are noticable
differences in the pressure distributions. The type of
boundary condition used has the little effect when
0=-90 degrees. However, when 0=90 degrees, the
inlet boundary condition has a significant effect, par-
ticularly near the leading edge shock. The zero inter-
blade phasc angle casc, which is near an acoustic
resonance condition, shows a different solution for
cach type of boundary condition. This is not to say
that these obscrvations will hold true for other flow
conditions. Much work has been done by other
researchers to predict when acoustic waves will prop-
agate from an oscillating blade row. They have
shown that different geometries and flow conditions
will change the propagation characteristics. While a
full study of wave propagation is beyond the scope of



this work, the present study does show that proper
treatment of the inlet and exit boundary conditions is
neccessary for modeling the first harmonic unstcady
pressure distributions in transonic flows. Overall, the
results from the boundary condition studics show that
the type of inlet boundary conditions have a greater
effect on the unsteady pressure distributions than the
type of exit boundary conditions. This is encouraging
for validating the viscous solutions that cannot usc
the non-reflective boundary conditions at the exit.
However, this conclusion is not substantiated without
a further study on the effects of inlet and exit distance
from the blade surface. All of the present cascs have
an inlet boundary closer to the blade than the cxit
boundary. Therefore, the downstrecam-running waves
have a longer distance for attenuation than the
upstream-running waves.

The inviscid runs require about 2.35x 10 °
seconds of CPU per time step per grid point per
blade. The number of time steps required for one
cycle of oscillation is a function of k,M ,, and A t. The
cases with k=0.185, M ,=0.80 and A t=0.01 require
2835 seconds of CPU for 6899 iterations, which cor-
responds to 3.25 cycles of oscillation of four bladcs.

It is possible to reduce this run time by performing a
grid and time step size study.

Conclusions

A compressible, Euler or full Navicr-Stokes, finite
difference code has been developed for modeling
inviscid and viscous flow through oscillating cascades.
The code uses a deforming grid tcchnique to capturc
the motion of the airfoils and can modcl oscillating
cascades with both zero and non-zero inter-blade
phase angles. Two-dimensional, unstcady character-
istic boundary conditions arc applicd at the inlct for
viscous solutions and to both the inlet and exit for
inviscid solutions to minimize wave reflections from
thesc regions. Results show that predictions for alow
speed, NACA 65-series oscillating cascade are in
good agreement with experimental data. The predic-
tions for an oscillating cascade of flat plates are in
good agreement with small-perturbation theory for
non-zero inter-blade phase angles. The zero degree
inter-blade phase angle cascs, which were near an
acoustic resonant condition, differ from the theory.
The predictions for an oscillating cascade of biconvex
airfoils are in fair agreement with cxperimental data
for non-zero inter-blade phase angles. Solutions for

zcro degree inter-blade phasc angles only show quali-
tative agrecment with the data. Studies on reflecting
versus non-reflecting inlet and exit boundary
conditions show that the treatment of the boundary
can have a significant effect on the first harmonic,
unstcady pressure distributions for the cases with
zcro inter-blade phase angles. Using first or second-
order temporal accuracy in the numerical algorithm
did not make a significant difference in the unstcady
pressure distributions for the present solutions.
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